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Abstract: Detection of outliers in radar signals is a considerable challenge in maritime surveillance 
applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential 
tools for long-range target identification and outlier detection at Over-The-Horizon (OTH) distances. 
However, a number of disadvantages, such as their low spatial resolution and presence of clutter, have a 
negative impact on their accuracy.  In this paper, we explore the applicability of deep learning techniques 
for detecting deviations from the norm in behavioral patterns of vessels (outliers) as they are tracked from 
an OTH radar. The proposed methodology exploits the non-linear mapping capabilities of deep stacked 
autoencoders in combination with density based clustering. A comparative experimental evaluation of the 
approach shows promising results in terms of the proposed methodology’s performance.  
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1   Introduction 
Detection of targets and outliers in radar signals is a research issue that has gained significant 
attention in the academic and industrial research community, mainly because of the important 
associated impact of relevant applications in surveying of large areas. High-Frequency Surface-
Wave (HFSW) radars is a category of radars that operate at the frequency band 3-30 MHz and, in 
contrast with other radars, use ground wave or sky wave propagation and ionospheric reflections 
of the electromagnetic waves for target detection, which allows for achieving longer ranges, 
where microwave radars cannot perform [1], but to the detriment of the attained accuracy. For 
many years, HFSW radars, or Over-The-Horizon (OTH) radars, as they are commonly known, 
have been used to remotely measure oceanographic parameters, providing information about 
surface currents, wave spectra, wind direction and intensity, etc. [2].  Their extraordinary range 
(up to 200 nautical miles) combined with their continuous mode of operation make for an ideal 



candidate tool for long-range oceanic surveillance. However, many associated weaknesses, e.g. 
low spatial resolution, high non-linearity, and important presence of clutter, negatively impact 
their performance as early-warning tools for detection, tracking and identification of vessels.  

The promising capabilities of OTH radars have attracted significant interest from the research 
community and have already resulted to various approaches (e.g. [3], [4]). Nevertheless, related 
research issues continue to present significant challenges, which can be attributed to few reasons, 
briefly described below: 

(i)   different targets may present similar dielectric and frequency properties thus making it 
hard to make a clear distinction among them. 

(ii)   given multipath propagation effects of rough surfaces, scattering from some objects tends 
to overwhelm the weak backscattering of targets. 

(iii)   due to the changes in atmosphere and ground conditions, noise is added which can 
confuse the analysis of a radar signal. 

(iv)   ocean and ionospheric clutter generate noise especially for HFSW radars. 

On a different note, the surge of deep learning and the great results it has produced in other signal 
analysis domains, such as computer vision, speech recognition and natural language processing, 
creates certain expectations regarding its potential efficacy in radar signal analysis applications. 
Deep learning allows computational models of multiple processing layers to learn and represent 
data with multiple levels of abstraction mimicking how the brain perceives and processes 
multimodal information, thereby implicitly capturing intricate structures of large-­‐scale data. 
Complex abstractions are learnt at a given level based on relatively simpler abstractions 
formulated in the preceding layer in the hierarchy.  

The goal of this paper is to present a framework for detecting deviations from the norm in 
behavioral patterns of vessels (henceforth called outliers), as they are tracked from an OTH radar. 
The proposed methodology exploits the non-linear mapping capabilities of deep stacked 
autoencoders (SAs) [5] in combination with density based clustering. Stacked Autoencoders are 
used in an unsupervised way to map the track history of any vessel into a compact and 
informative feature vector. Then, at any moment all tracked ships are projected into a new feature 
space and clustered using density based algorithms, such as OPTICS [6]. The outcome of the 
clustering stage then indicates possible outliers.  

The remainder of this paper is structured as follows: Section 2 presents an overview of the related 
work. In Section 3 we describe in detail the proposed methodology for outlier detection in OTH 
radar signals, which is followed by the experimental evaluation of the methodology in Section 4. 
Finally, Section 5 concludes the paper. 

 

2   Related work 
In the literature, several signal processing and machine learning methods have been investigated 
and proposed to acquire more reliable data with lower noise and extract semantic information 



from radar signals. Kouemou and Opitz [7] introduced a wavelet-based feature analysis 
combined with Hidden Markov Models (HMM) to classify real radar signals into predefined 
categories. Spectral analysis [8] is used by Garbanzo-Salas and Hocking [9] for detecting small 
objects from harmonic pulse radar data. The use of on-line bootstrapping machine learning tools 
to improve target detection rate of radar signals is also one major research area [10]. Radar data 
can be analyzed using the concepts of transfer learning since often we have available only a small 
number of labelled data while the majority of signals captured are unlabelled (non-annotated) 
[11]. Other works focus on modeling of ionospheric disturbances on spaceborne interferometric 
Synthetic Aperture Radar (SAR) via Echo-State Networks [12], [13] or ensemble classifiers [14]. 

De-noising techniques for radar signals include low level processing such as the median filter or 
other non-linear convolution schemes [15]. Other approaches spatially or temporally decompose 
radar signals by wavelet transforms [16], [17]. This way, we can find patterns distributed on space 
and time domain to improve targets detection efficiency. These methodologies can be extended 
to the analysis of Synthetic Aperture Radar (SAR) images  [11], or by incorporating sparsity-based 
signal analysis [18]. A neural network based scheme for detecting salient objects in SAR images 
is recently presented [19]. The goal is to identify changes in SAR content. A similar approach for 
detecting changes using non-linear stacked restricted Boltzmann machines is given in the work 
of Lie et al. [20], while multi-layered feature learning to improve detection accuracy of SAR 
images is described by Xie et al. [21]. Furthermore, low-power HF surface-wave (HFSW) radars 
have demonstrated to be a cost-effective long-range early-warning sensor for ship detection and 
tracking [22], [23]. A detailed description of various ways in which HFSW radar technology can 
be used for maritime surveillance is provided by Braca et al. [24].   

Regarding deep vs. “shallow” learning schemes, traditional machine learning techniques exploit 
shallow architectures, i.e. they use a single layer for data/feature transformation, even in a highly 
non-linear space. Shallowness refers here to the simplicity of these architectures that use only one 
(or few) layer(s) of processing, responsible for transforming the raw input signals or features into 
the problem-specific feature space. Instead, in a deep learning paradigm, the architectures are 
composed of many (deep) non-linear processing stages [25]. Deep learning has been extensively 
applied in many fields, such as computer vision [26] (e.g. behavior recognition [27] and human 
tracking [28]) and speech recognition [29]. However, its applicability in radar signal processing 
had not being investigated until very recently [30]. Even so, most of the proposed works pertain 
to object detection in SAR image data [31], essentially resembling visual analysis approaches. 

 

3   The proposed methodology  
The proposed methodology exploits the non-linear mapping abilities of stacked autoencoders 
(SAs) [5] in combination with density based clustering, to identify irregular occurrences, using 
over-the-horizon radar data.  Such an approach is based on two main assumptions: 

1.   The history of a naval vessel, in terms of speed, position, course, signal frequency or other related 
data, provided by a ground radar, suffices to extract meaningful features. 



2.    Unexpected deviation from the norm is observed for a few ships, denoted henceforth as outliers. 

The approach is relatively straightforward: Given a set of OTH data entries, SAs are used in an 
unsupervised way to map the track history of any vessel into a compact and informative feature 
vector. Then, at any moment all tracked ships are projected into a new feature space and clustered 
using OPTICS [6], a widely used density based algorithm. The clustering outcome informs about 
possible outliers. In the following subsections, the different stages of the methodology are 
presented, after a brief description of the data involved. Figure 1 provides a high-level view of 
the proposed approach. 

	
  

Figure 1. Proposed approach flowchart. 

3.1   OTH and AIS data 
Heterogeneous data, such as automatic identification system (AIS) data, high-frequency surface 
wave (HFSW) radar data, and synthetic aperture radar (SAR) data, have been exploited in 
research for maritime surveillance purposes [32]. In our case, two sources of information were 
fused to support the outlier detection process: OTH radar and AIS data.  

The OTH radar data used for the setting and evaluation of the presented work was acquired by 
the HFSW STRADIVARIUS radar by Diginext [33]. OTH radar detection (plot) and tracking 
(track) data are the output of the OTH radar for a given period. The plot and track data provided 
include estimated position coordinates, velocity, course, Doppler frequency, global and local 
noise levels, azimuth, and other parameters, appropriately timestamped.  

On a different note, AIS is an automatic tracking system used for collision avoidance on ships 
and by vessel traffic services. AIS information supplements marine radar, which continues to be 
the primary method of collision avoidance for water transport.  Vessels equipped with AIS 
transceivers can be tracked by AIS base stations located along coast lines. The International 
Maritime Organization's International Convention for the Safety of Life at Sea requires AIS to be 
present aboard international voyaging ships with gross tonnage of 300 or more, and all passenger 
ships regardless of size [34]. AIS reports contain both dynamic information (e.g., latitude, 
longitude, course over ground, speed over ground, and time) and static information (e.g., vessel 
type and dimension information). 



3.2   Density based clustering as a basis for outlier detection 
Clustering refers to the task of identifying groups or clusters in a data set. In density-based 
clustering, a cluster is a set of data objects spread in the data space over a contiguous region of 
high density of objects. Density-based clusters are separated from each other by contiguous 
regions of low density of objects. Data objects located in low-density regions are typically 
considered noise or outliers [35]. OPTICS algorithm [6], as one among various approaches for 
hierarchical density based clustering, includes ordering points to identify the clustering structure. 
OPTICS is based on DBSCAN [36] and the work of Stuetzle [37].  

OPTICS computes a Minimum Spanning Tree (MST) of the data, where edge weights represent 
pairwise distances. These distances are smoothed by a density estimator, called core distance. The 
core distance of a point 𝒙" is the smallest threshold 𝑟 such that 𝒙" is still considered a core object 
by the DBSCAN algorithm, i.e., 𝒙" has at least 𝑘 objects in its neighborhood within radius 𝑟. The 
resulting distance, which is used to construct the MST, is called reachability distance (RD). Taking 
𝑘 as input parameter for smoothing the density estimation, the reachability distance of point 𝒙" is 
defined relative to a reference object 𝒚 as the minimum of the core distance of 𝒚 and the actual 
distance between 𝒙" and 𝒚. The outcome of the algorithm can provide us information about the 
clustering of the objects (see sec. 3.4). 

3.3   Using stacked autoencoders for data representation 
Density based algorithms, traditionally, use the Euclidian distance metric [38]. Such distance 
metrics are prone to high dimensionality related problems. If we have a feature space of many 
dimensions, i.e. the tracked course of a ship, clustering performance decreases.  

Let 𝒏 and 𝒎 be points drawn from a d-dimensional Gaussian distribution, so that 𝒏~𝑁(𝜇,, 𝜎,/ ⋅ 𝑰) 
and 𝒎~𝑁(𝜇/, 𝜎// ⋅ 𝑰). Then their expected distance satisfies [39]: 
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(3.1) 

Thus, the term 𝑑 ⋅ 𝜎,/ + 𝜎// , where d is a scalar denoting the dimensions of the Gaussian 
distribution, overshadows the informative term 𝜇, − 𝜇/ /.  At this point, the need of robust low-
dimension features becomes apparent. In such cases the use of autoencoders is advised [5]. 

An autoencoder is a neural network that is trained to attempt to copy its input to its output. 
Internally, it has a hidden layer ℎ that describes a code used to represent the input. The network 
may be viewed as consisting of two parts: an encoder function ℎ = 𝑓(𝑥) and a decoder that 
produces a reconstruction 𝑟 = 𝑔(ℎ). Autoencoders are designed to be unable to learn to copy 
perfectly, since they are trained such that 𝑔 𝑓 𝒙 ≈ 	
  𝒙 instead of 𝑓 𝒙 = 	
  𝒙. The model often 



learns useful properties of the data, because it is forced to prioritize which aspects of the input 
should be copied. 

Usually, training the autoencoder to perform the input copying task will result in ℎ taking on 
useful properties, constraining ℎ to have smaller dimension than x. An autoencoder whose code 
dimension is less than the input dimension is called undercomplete. Learning an undercomplete 
representation forces the autoencoder to capture the most salient features of the training data 

The learning process is described simply as minimizing a loss function, e.g. 𝐿 𝒙, 𝑔 𝑓 𝒙 , where 

𝐿 is a loss function penalizing 𝑔 𝑓 𝒙  or being dissimilar from 𝒙, such as the mean squared error. 
When the decoder is linear and 𝐿 is the mean squared error, an undercomplete autoencoder learns 
to span the same subspace as PCA. In this case, an autoencoder trained to perform the copying 
task has learned the principal subspace of the training data as a side-effect  

A sparse autoencoder is simply an autoencoder whose training criterion involves a sparsity 

penalty Ω 𝒉  on the code layer 𝒉, in addition to the reconstruction error, i.e. 𝐿 𝒙, 𝑔 𝑓 𝒙 +

Ω 𝒉 . Sparse autoencoders are typically used to learn features for another task such as 
classification. An autoencoder that has been regularized to be sparse must respond to unique 
statistical features of the dataset it has been trained on, rather than simply acting as an identity 
function. 

The core idea of our work lies in using stacked autoencoders to capture a representation of the 
main patterns present in the data. By doing so, any outlier in data samples will not be explained 
well using that representation. In other words, outliers will have significant variations from the 
rest of the data. 

3.4   Identifying outliers 
The outlier detection is a combinatory threshold-based approach built on the interquartile range 
rule, as in [40], OPTICS output (see sec. 3.2), and AIS/OTH matched data (see sec. 3.5).  

OPTICS outputs (i.e. reachability distances of the ordered ships) is treated as a continuous signal, 
over which we identify the peaks. Peaks correspond to significant changes between the closest 
compared vehicles. As such, anything that varies from the norm, has a peak, allowing us the easy 
identification of a possible outlier. Then, we calculate a threshold value 𝑡ℎ𝑠(I) defined as 𝑡ℎ𝑠(I) =
,
J

𝑅𝐷M(𝑖)J
" , 𝑚 = 0.1 ⋅ 𝑛I , where 𝑛I denotes the number of ships at a time 𝑡 and 𝑹𝑫M is the 

reachability distances vector, in a descending order. 

In case that an outlier provides AIS data, the detection regarding that ship is ignored. At first, for 
a specific time instance, ships are ordered in a density-reachable way (Figure 2). Points close to 
each other should belong to the same cluster, unless there is a significant change in RD value. 
Then, the outlier RD value threshold is defined over 10% of highest RDs. 



 
Figure 2. (Best viewed in color.) Illustration of an instance of the outlier detection mechanism at a specific time moment. 

3.5   Matching OTH data to AIS  
As explained in sec. 3.1, AIS data contain, among other, ships’ trajectory points. These coordinates 
are compared to the radar ones, to identify the similarity among the trajectories.  Let us denote as 
𝑻U
(VW) = 𝑡,, … , 𝑡Y  the available discrete time instances, created from the ground radar for ship 𝑣", 

𝑖 = 1, … , 𝑛. The equivalent case for AIS data is 𝑻[\]
(𝓋_) = 𝑡,, … , 𝑡`  for any ship  𝓋a, 𝑗 = 1, … , 𝑙, that 

provides AIS data.  

Figure 3 illustrates the available trajectories over a specified area for both radar and AIS data. At 
this point, we should note that trajectories are calculated for various time intervals, which do not, 
usually, coincide among the two systems. Typically, for the same ship 𝑝 > 𝑞, in a ratio of four 
radar time instances to one AIS time instance.  Also, note that 𝑙 < 𝑛, so that a 1-to-1 match among 
radar and AIS tracked ships is not feasible.  Therefore, we should consider both the temporal and 
the spatial information, to find the matches. The following algorithm (presented in pseudocode 
in Table 1) performs the vessel matching (Figure 4), given OTH and AIS information recorded at 
the same time (for further details about used data see Sec. 4.2). 

 



 
Figure 3. (Best viewed in color.) An illustration of the investigated ship trajectories. Ground radar trajectories are plotted in 
grayscale. The fading colors correspond to past times. 

 

The matching process is based on a voting mechanism.  For each of the radar tracked ship 𝑣", at a 
time instance 𝑡h, 𝑤 = 1,… , 𝑝, we calculate the 𝑘 closest ships 𝓋", according to their AIS position 
at the specific time. In order to identify the corresponding (closest) AIS time instance of ship 𝓋" 
to radar entry 𝑣", at a time 𝑡hU , we calculate the time difference 𝑻9"jj

𝓋W	
   = 𝑡,[\] − 𝑡hU , … , 𝑡`[\] − 𝑡hU , 

then the corresponding time instance is given as 𝑐I = arg min
𝑻rWss J tu

𝑻9"jj
𝓋W	
   1 , … , 𝑻9"jj

𝓋W	
   (𝑞) . In case 

that 𝑐I = ∅, AIS entry 𝓋a is not matched to 𝑣" at time 𝑡h. Then, once we have a set of matched ship 

instances 𝑀VW
I_ = 𝓋x x:,

U ,R<q, we find 𝑘 closest entries to 𝑣" according to their position (i.e. 

longitude, latitude), so that 𝑀VW
Iy = 𝓋x x:,

z , 𝑘 ≪ 𝑞.  

 

Table 1. The proposed algorithm in pseudocode. 

Input:	
  OTH	
  and	
  AIS	
  trajectories	
  and	
  other	
  provided	
  information	
  for	
  a	
  set	
  of	
  past	
  time	
  instances	
   𝑡 	
  
Output:	
  𝑛×𝑚	
  ×𝑡	
  matrix	
  of	
  the	
  closest	
  AIS	
  entries	
  to	
  each	
  OTH	
  entry	
  for	
  a	
  set	
  of	
  past	
  time	
  instances	
  
𝑡 	
  
FOR	
  each	
  time	
  instance	
  𝑡	
  

FOR	
  each	
  tracked	
  ship	
  𝑣",	
  𝑖 = 1, … , 𝑛I	
  	
  
FOR	
  each	
  AIS	
  transmitting	
  ship	
  𝓋a 	
  

Check	
  difference	
  in	
  track	
  time	
  and	
  AIS	
  transmission	
  time	
  𝑻9"jj
𝓋W	
   	
  

	
  	
   	
   	
   Find	
  corresponding	
  time	
  instances	
  𝑐I	
  
	
  	
   	
   	
   IF	
  𝑐I = ∅	
  



	
  	
   	
   	
   	
   No	
  AIS	
  entry	
  is	
  matched	
  to	
  𝑣" 	
  
	
   	
   	
   ELSE	
  
	
   	
   	
   	
   Run	
  𝑘nn	
  search	
  using	
  coordinates	
  among	
  𝑣" 	
  and	
   𝓋a }~

	
  

	
   	
   	
   	
   Maintain	
  4	
  closest	
  entries	
  
	
   	
   	
   END	
  
	
   	
   END	
  
	
   END	
  
END	
  
Input:	
  𝑛×𝑚	
  ×𝑡	
  matrix	
  of	
  the	
  closest	
  AIS	
  entries	
  to	
  each	
  OTH	
  entry	
  for	
  a	
  set	
  of	
  past	
  time	
  instances	
   𝑡 	
  
Output:	
  𝑛×1	
  array	
  with	
  indices	
  of	
  the	
  matched	
  AIS	
  to	
  each	
  one	
  of	
  the	
  𝑛	
  OTH	
  tracked	
  vehicles	
  
Initialize	
  𝑛×𝑚	
  matrix	
  FOR	
  the	
  votes	
  𝑉J	
  
FOR	
  each	
  OTH	
  tracked	
  ship	
  𝑣" 	
  
	
   FOR	
  each	
  time	
  instance	
  𝑡	
  
	
   	
   IF	
  	
  ship	
  𝑛" 	
  had	
  ship	
  𝑚a 	
  in	
  the	
  vicinity	
  	
  
	
   	
   	
   𝑉J 𝑖 𝑗 = 𝑉J 𝑖 𝑗 + 1	
  
	
   	
   END	
  

END	
  
END	
  
WHILE	
  	
  AIS	
  vessels	
  remain	
  unmatched	
  
	
   	
  𝑀𝑎𝑡𝑐ℎ𝐼𝑑𝑥[\]/��� = 𝑎𝑟𝑔max

���
𝑉J 	
  

	
   IF	
  𝑙𝑒𝑛𝑔𝑡ℎ 𝑀𝑎𝑡𝑐ℎ𝐼𝑑𝑥[\]/��� > 1	
  
	
   	
   KEEP	
  AIS	
  entry	
  closest	
  to	
  OTH	
  vehicle	
  
	
   END	
  
	
   Update	
  𝑉J	
  
END	
  

 

 

  
(a) (b) 

Figure 4. (Best viewed in color.) Illustration of matched trajectories between ground radar and AIS data (a) and matched trajectories 
despite the noise, due to minor course deviations (b). 



4   Experimental results 
In the following subsections, we describe the dataset utilized for the experiments, the 
performance evaluation metrics employed and the system setup details, before presenting the 
experimental evaluation of the proposed framework. 

4.1   Computational complexity 
Data preprocessing creates a set of 𝓀 OTH data related entries, for a predefined set of past 
moments, for each one of the  𝑛I tracked ships, at a moment 𝑡. Since both 𝓀 and 𝓂 are constants 
defined by the user, the required runtime is 𝑂 𝑛 . The mapping process of a trained SA is 𝑂 1  
per datum, since SAs are neural networks with a defined number of neurons. OPTICS processes 
each point once, and performs one ϵ-neighborhood query during this processing. Given a spatial 
index that grants a neighborhood query in 𝑂 𝑙𝑜𝑔 𝑛  runtime, an overall runtime of 𝑂 𝑛 ⋅ 𝑙𝑜𝑔 𝑛  
is obtained. The matching process between AIS and OTH entries require an overall runtime of 
𝑂 𝑛 ⋅ 𝑚 , 𝑚I ≪ 𝑛I, since we compare each of the 𝑛I OTH tracked ships to each of the 𝑚I ships 
equipped with AIS. Table 2 displays the computational complexity of the different processing 
steps. 

Table 2. Computational complexity of the different processing steps. 

Processing	
  step	
   Data	
  preprocessing	
  	
   Data	
  mapping	
   Data	
  clustering	
   OTH	
  and	
  AIS	
  matching	
  
Complexity	
   𝑂 𝑛 	
   𝑂 𝑛 	
   𝑂 𝑛 ⋅ log 𝑛 	
   𝑂 𝑛 ⋅ 𝑚 	
  

 

4.2   Utilized dataset 
The utilized dataset pertains to approximately 6 hours of data captured from the Mediterranean 
coast of France by DIGINEXT in July 2016 in the context of the RANGER EU Horizon 2020 project. 
AIS data for the same period were also obtained for use as ground truth.  

A total of 556 ship entries were in this 6-hour dataset. The following data provided entries are 
used: 

1.   Longitude and latitude: position values provided in degrees. The typical range is 
−180,180  and −90,90  respectively. 

2.   Course and speed: course is calculated in degrees, typically in the range −180,180  and 
speed in m/s. 

3.   Doppler frequency: is calculated in Hz, typically in the range  −0.5, 0.5 . 
4.   Raw Rx azimuth: azimuth angle from the Rx site in the raw spatial grid (equivalent to the 

reception beam), typically in the range  110,230 . 
5.   local noise: noise level in the surrounding of the plot. It is calculated in (dBm), in the range 

[−120, −40].  
6.   global noise: background noise level of all range-Doppler map. It is calculated in (dBm), 

in the range [−120, −80].  



4.3   Performance metrics 
Formally, a cluster analysis can be described as the partitioning a number of 𝑁 classification 
objects in 𝐾 groups or clusters {𝐶z}, 𝑘 = 1, . . . , 𝐾. Given 𝑁 objects 𝑿 = 	
   {𝒙,	
  , … , 𝒙�}, where 𝑥"a 
denotes the 𝑗-th element of 𝒙". The grouping of all objects 𝒙", 𝑖	
   = 1, …	
  , 𝑁 in 𝐾 clusters can be 
defined as follows:  

𝑤z" =
1, 𝑖𝑓𝑓	
  𝒙" ∈ 𝐶z
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (4.1) 

 

The above formulation ensures that the association of each object to a cluster is unique.; A unique 
association is a valid case for both hierarchical and partitioning cluster analysis. Given matrix 𝑾, 
various internal quality indices have been calculated, to determine an optimal clustering. 

4.3.1   Calinski Harabasz index 
The Calinski Harabasz index (CHI) [41] is defined according to the following equation: 

𝐶𝐻𝐼 𝑘 =
𝑇𝑩

𝐾 − 1
𝑇𝑾

𝑁 − 𝐾
 (4.2) 

where 𝑇𝑩 is defined as: 

𝑇𝑩 = 𝑪z 𝑪z − 𝒙
z

z:,

 (4.3) 

and 𝑇𝑾 is defined as: 

𝑇𝑾 = 𝑤z" 𝒙" − 𝑪z /
�

":,

z

z:,

 (4.4) 

𝑇𝑾 starts at a comparably large value. With increasing number of clusters 𝑘, approaching the 
optimal clustering solution in 𝐾∗ groups, the value should significantly decrease due to an 
increasing compactness of each cluster. As soon as the optimal solution is exceeded an increase 
in compactness and thereby a decrease in value might still occur. However, any decrease in value 
should be notably smaller. 

Calculated for each possible cluster solution, the maximum CHI value indicates the best cluster 
partitioning of the data.   

4.3.2   Davies–Bouldin index 
The Davies–Bouldin index (DBI) [42] is an internal evaluation scheme, where the validation of 
how well the clustering has been done is made using quantities and features inherent to the 
dataset. DBI is defined as follows: 

𝐷𝐵(𝑘) =
1
𝐾

𝑅z

¥

z:,

 (4.5) 

where 𝑅z is defined as: 



𝑅z = 𝑚𝑎𝑥
𝒮z + 𝒮a
𝑑za

, 𝑗 = 1, … , 𝐾	
  	
  𝑗 ≠ 𝑘	
   (4.6) 

𝑑za is a distance function, defined as 𝑑za = 𝒙z − 𝒙a  and 𝒮z is defined as: 

𝒮z =
1
𝑤z"�

":,
𝑤z" 𝒙" − 𝒙z

�

":,

 (4.7) 

All the above equations assume that 𝑘 ∈ 1, 𝐾 . 

For each cluster 𝐶z	
  an utmost similar cluster—regarding their intra-cluster error sum of squares—
is searched, leading to 𝑅z. The index then defines the average over these values. In this case, the 
minimum index value corresponds to the best cluster solution. 

4.3.3   Silhouette 
The silhouette value is a measure of how similar an object is to its own cluster (cohesion) 
compared to other clusters (separation). The silhouette ranges from -1 to 1, where a high value 
indicates that the object is well matched to its own cluster and poorly matched to neighboring 
clusters. If most objects have a high value, then the clustering configuration is appropriate. If 
many points have a low or negative value, then the clustering configuration may have too many 
or too few clusters. 

For each datum 𝒙", let 𝛼 𝒙"  be the average dissimilarity (distance) of 𝒙" i with all other data 
within the same cluster 𝐶z.  Let 𝑏 𝒙"  be the lowest average dissimilarity of 𝒙" to any other cluster 
𝐶ª,𝑙 ≠ 𝑘, of which 𝒙" is not a member. We now define a silhouette as: 

𝑠 𝒙" =
𝑏 𝒙" − 𝛼 𝒙"

max 𝛼 𝒙" , 𝑏 𝒙"
 (4.8) 

 

thus, 𝑠 𝒙" ∈ [−1,1]. Values close to one indicate that the datum 𝒙" is appropriately clustered at 

𝐶z. The average silhouette value over all data, i.e. 𝑠 = ,
«

𝑠 𝒙"«
":, , is another measurement for the 

quality of the generated clusters. 

4.4   Experimental setup 
The first step should be the definition of the feature space on which radar data are mapped. As a 
starting point, we investigated the dimensional space provided by PCA, maintaining 99.1% of the 
original variation. The adopted stacked autoencoder approach consists of three layers or four 
layers, depending on the PCA outcome. The loss function was the well-known mean square error 
[43] with L2 and Sparsity regularizers [44]. 

Ships track history is composed of 9 consecutive frames, each containing all data as described in 
sec. 4.2. Data are normalized using minmax approach, prior to mapping or clustering approach. 
The system ignores ships with a narrow appearance span. Any ship that has not enough sufficient 
entries, i.e. ¾ of past moments tracks is not taken under consideration.  



4.5   Evaluation of results 
OPTICS algorithm outcomes depend on the selection of minimum cluster size. We have 
investigated the clustering outputs assuming at least 2, 5, 8, 11, 14, 17, 20, 23 and 26 members in 
each cluster. Clustering over SA mapped data performed better than using raw or PCA mapped 
data, for most of investigated cases. 

According to CHI (Figure 5), highest scores are achieved when using 26 ships per cluster. It is 
intriguing that cluster performance scores over raw data outperforms PCA mapped data scores. 
There is an increasing trend on the CHI as the minimum cluster size increases. The trend is clearly 
illustrated for SAs, less for raw data and slightly for PCA projected data. 

 
Figure 5. The impact of minimum cluster size (OPTICS input parameter) on Calinski Harabasz index average score. Stacked 
Autoencoders CHI scores are better in all the investigated cases, compared to PCA and raw data based clusters. 

The next step was the investigation of DBI scores for the same minimum cluster size setup (Figure 
6). This time, the best scores are achieved using 14 or 20 as the cluster size. SA mapping provides 
with better clustering scores in five out of seven investigated cases. Regardless the mapping 
method, CHI scores, over SA mapped data, improve as the number of clusters rises, but not in a 
monotonic way.  
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Figure 6. The impact of minimum cluster size (OPTICS input parameter) on Davies-Bouldin index average score. Stacked 
Autoencoders CHI scores are better in six out of eight investigated cases, compared to PCA based clusters, and five out of eight 
cases compared to raw data. 

The last cluster performance metric was the average silhouette distance (Figure 7). Results 
suggest that accepting two ships as minimum cluster size is the best possible setup, for PCA 
mapped data. On the other hand, if we use SA for data mapping, the minimum cluster size should 
be set as 20.  

 
Figure 7. Impact of minimum cluster size (OPTICS input parameter) on silhouette average values. Stacked Autoencoders silhouette 
scores are better in five out of eight investigated cases, compared to Raw based clusters. 
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Another significant performance metric is the average reachability distance itself. The smaller the 
reachability distance of a point is, the higher is the density around it. The core idea of the 
proposed approach is that only outliers should vary significantly from the norm, on the projected 
feature space. Thus, all the ships, minus the outliers, should have similar feature values, which 
results in reduced reachability distances.   

Providing more training data allows SA to adjust the mapping process to the norm. As illustrated 
in Figure 8 the average reachability distance tends to one, at a slow pace, while increasing the 
number of training samples. The variance of the RD is, also, reduced when using more time 
instances for training, as shown in Figure 9. Furthermore, SA mapping allows for the creation of 
more clusters compared to PCA or raw data clustering (Figure 10). 

 
Figure 8. An illustration of how the number of training paradigms affects the average reachability distances (OPTICS outputs). 
Raw data average RD value exceeds 10, in each of the cases. 
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Figure 9. Illustration of the training period span effect on the variance in reachability distances. Raw data RD variance exceeds 40, 
in each case. 

 
Figure 10. Average number of generated clusters given various mapping approaches. In all of the investigated cases (i.e. different 
minimum cluster size), SAs provide more clusters. 

Regardless of the adopted feature mapping approach, OPTICS outputs are at least four times less 
in value, compared to calculated RDs using raw data (see Figure 11 (a), (b) top). Additionally, 
SAs result in more clusters, in most of the cases (see Figure 11 (a), (b) bottom). Increasing the 
number of minimum ships per cluster, close objects have almost identical reachability distances, 
resulting in almost linear sub regions, within RD curve. 
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(a) (b) 

Figure 11. (Best viewed in color.) Comparison of OPTICS outputs over the same time instance, setting as minimum cluster size 
(a) 20 and (b) 26 ships. Stacked autoencoders result in more clusters than PCA or raw data; that implies more peaks in the signal, 
which leads to more outliers’ detection.   

The last step of the performance analysis provides with empirical findings. In most of the cases, 
SAs mapped data results in detection of more outliers compared to the other approaches (Figure 
12). The maximum number of detected outliers was three. PCA resulted in no detections at any 
time. 



 
Figure 12. (Best viewed in color.) Illustration of the detected outliers through time. Using SAs’ mapped data results in more outliers 
compared to the other approaches. Some of the selected outliers correspond to ships equipped with AIS transmitters. 

There was the possibility of unwanted outlier identification. In particular, ships providing AIS 
data were considered, few times, possible outliers. Figure 13 illustrates the case. Typically, using 
SAs resulted in few possible outliers, which however were not accepted as valid detection, as 
explained in sec. 3.4. 

 
Figure 13. (Best viewed in color.) Illustration of the ships identified as possible outliers, while providing AIS data. Such cases are 
not considered as outliers. 



5   Conclusions 
In our article, a novel approach that identifies unexpected behavior in ship plot and track 
patterns, as captured by an OTH radar, has been presented. The core idea is the unsupervised 
development of a mapping process, which can project the raw data in a compact, lower feature 
space. Outliers projected to the same space should have significantly different values. Stacked 
autoencoders and PCA were used for the mapping process and compared against the exploitation 
of raw data, for the identification of unusual ship behavior. Density-based clustering algorithms 
(OPTICS) were employed for clustering-based outlier detection.  Experimental results suggest 
that the approach based on SAs outperforms the other approaches in both generated cluster 
quality and outliers’ identification. 
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